




## **Outline**

- 1) Introduction
- 2) STAR Physics Program
  - Physics working group
  - Upgrade programs
  - Run plan for 2009 2013\*

\* As prepared in May 2008

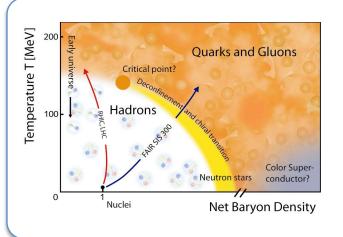
# 3) Summary and Questions



# **Physics Goals at RHIC**

#### RHIC

Au+Au, Cu+Cu, d+Au, p+p at 200 – 5 GeV

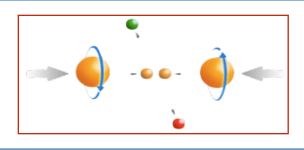

Polarized p+p at 200 & 500 GeV

p+p, d+Au pp2pp

- Identify and study the property of matter (EOS) with partonic degrees of freedom.
- Explore the QCD phase diagram.
- Study the origin of spin in p.
- Investigate the physics at small-x, gluon-rich region.

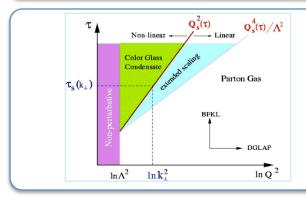


# STAR Physics Focus




#### 1) At 200 GeV top energy

- Study medium properties, EoS
- pQCD in hot and dense medium


#### 2) RHIC beam energy scan

- Search for *critical point*
- Chiral symmetry restoration



#### Polarized spin program

- Study proton intrinsic properties



#### Forward program

- Study low-x properties, search for CGC
- Study elastic (inelastic) processes (pp2pp)
- Investigate gluonic exchanges



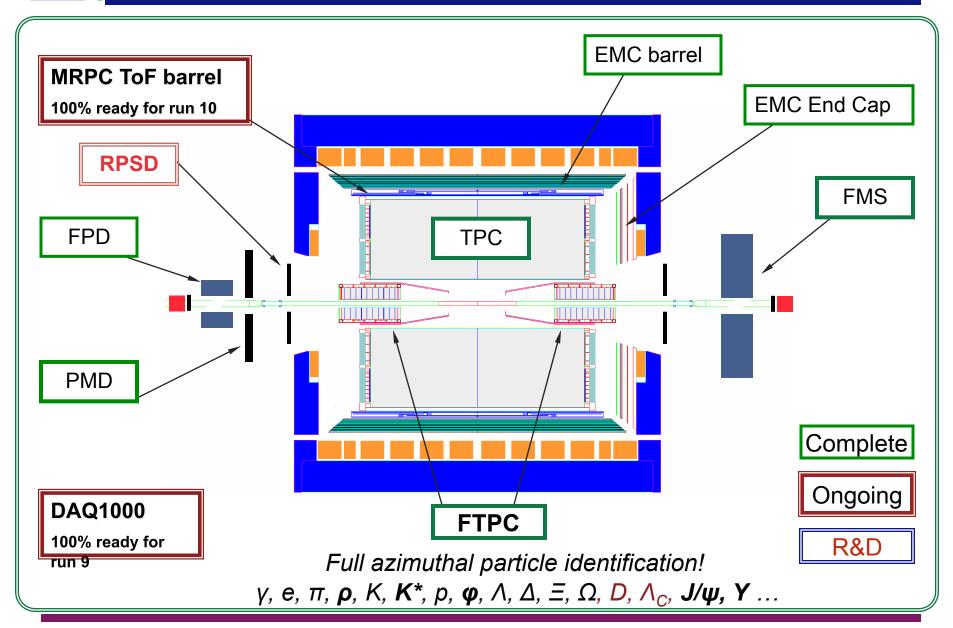
# STAR Physics Working Groups

1) Spin: g contribution to spin structure

**2) UPC:** UPC, pp2pp

3) Heavy Flavor: c-, b-quark hadrons

4) Light Flavor Spectra: *u-, d-, s-*quark hadrons,


di-leptons, photons

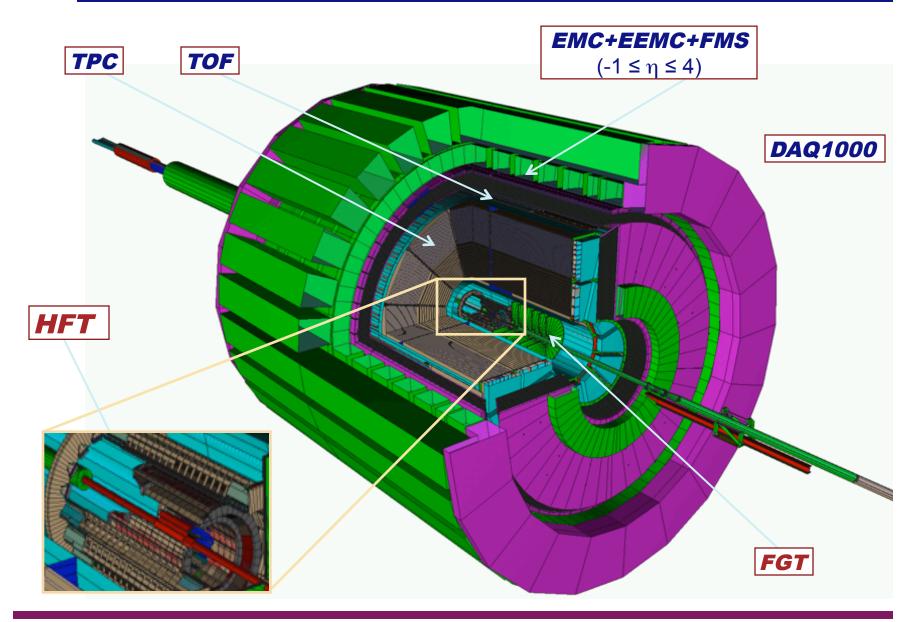
5) Bulk Correlations:  $v_1, v_2,$  correlations/fluctuations

6) Jet Correlations: high-p<sub>⊤</sub> triggered correlations



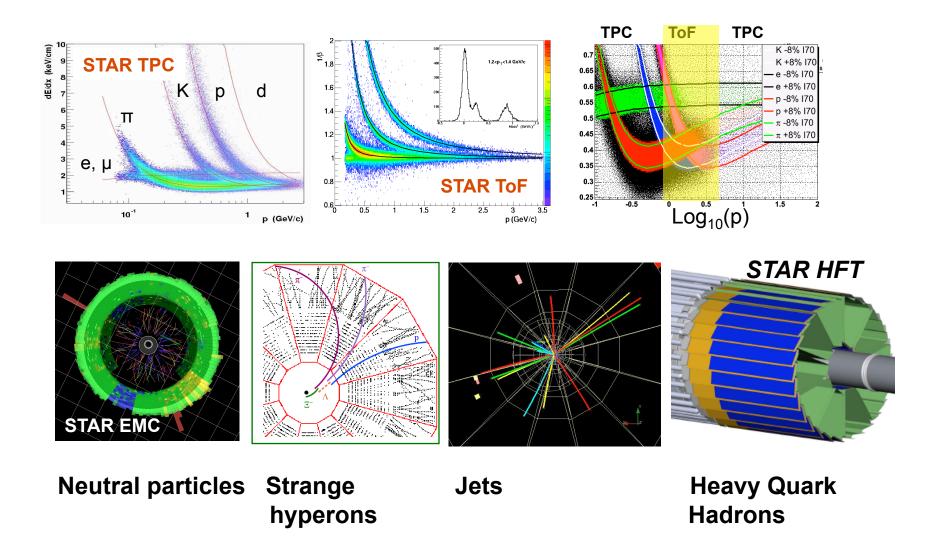
# **STAR Detector**






# **STAR Detector**

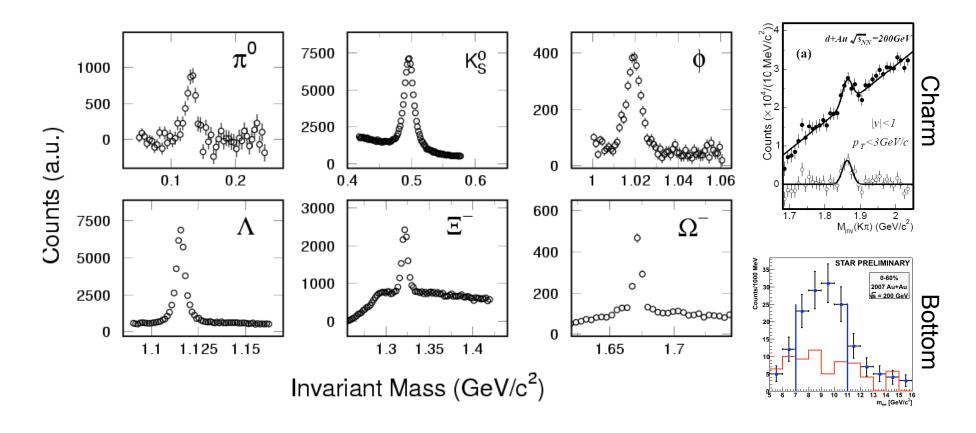





# STAR Detectors: Full 2π particle identification!



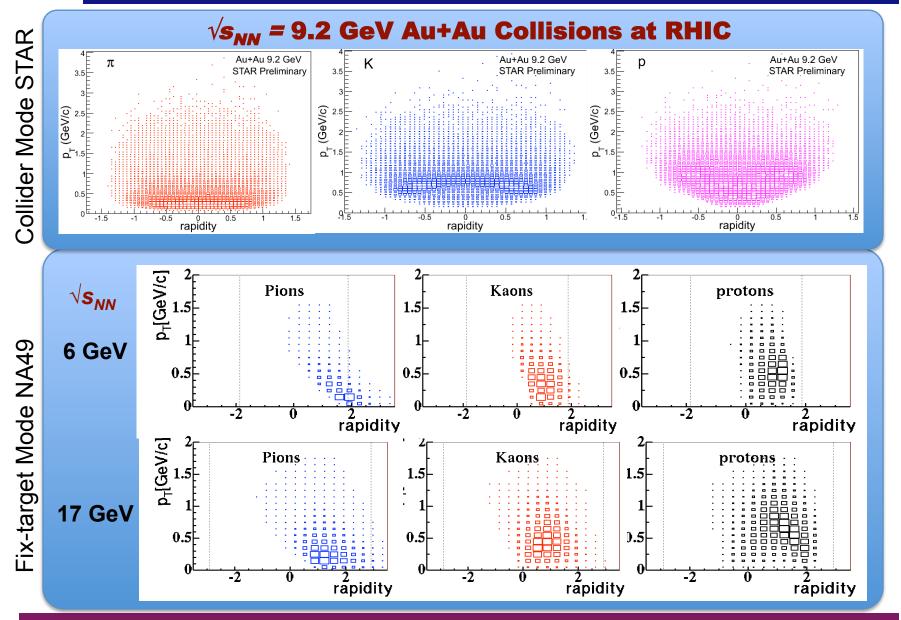



## Particle Identification at STAR



Multiple-fold correlations among the identified particles!




# Particle Identification (ii)



Reconstruct particles in full azimuthal acceptance of STAR!



# **Collider Acceptance**





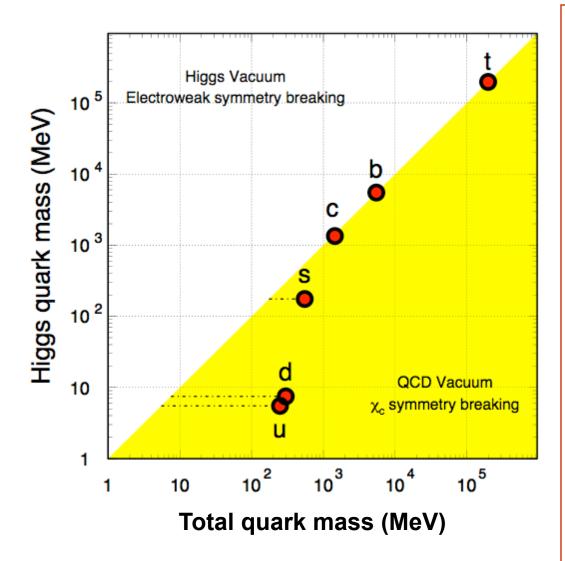
# sQGP and the QCD Phase Diagram

# In 200 GeV Au+Au collisions at RHIC, strongly interacting matter formed:

- Jet energy loss: R<sub>AA</sub>
- Strong collectivity: v<sub>0</sub>, v<sub>1</sub>, v<sub>2</sub>
- Hadronization via coalescence: n<sub>α</sub>-scaling

## **Questions:**

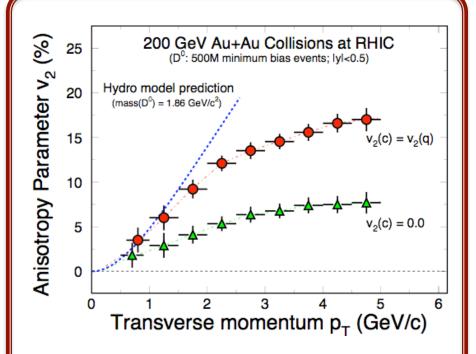
Is thermalization reached at RHIC?


- Systematic analysis with dN/dp<sub>T</sub> and dv<sub>2</sub>/dp<sub>T</sub> results...
- Heavy quark measurements

When (at which energy) does this transition happen? What does the QCD phase diagram look like?

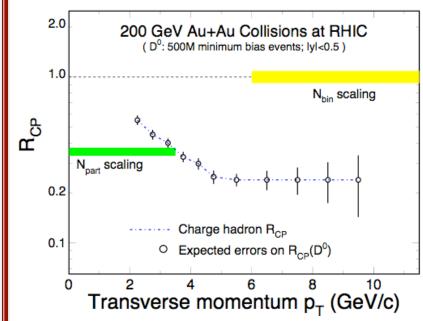
- RHIC Beam Energy Scan




## **Quark Masses**



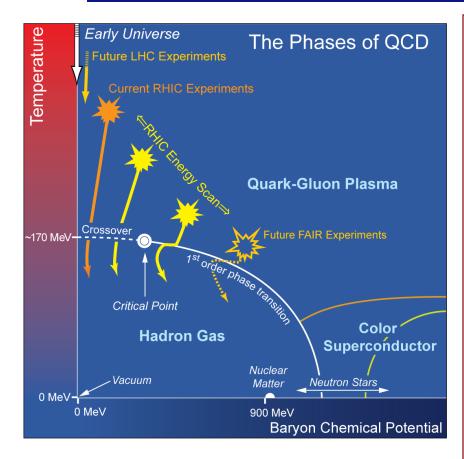
- 1) Higgs mass: electro-weak symmetry breaking. (current quark mass)
- QCD mass: Chiral symmetry breaking. (constituent quark mass)
- New mass scale compared to the excitation of the system.
- □ Important tool for studying properties of the hot/dense medium at RHIC.
- Test pQCD predictions at RHIC.




# Charm Hadron v<sub>2</sub> and R<sub>AA</sub>



- 200 GeV Au+Au m.b. collisions (500M events).
- Charm hadron collectivity ⇒ drag/diffusion constants ⇒


**Medium properties!** 



- 200 GeV Au+Au m.b. collisions (|y|<0.5 500M events)
- Charm hadron R<sub>AA</sub> ⇒
  - Energy loss mechanism!
  - QCD in dense medium!



# The QCD Phase Diagram

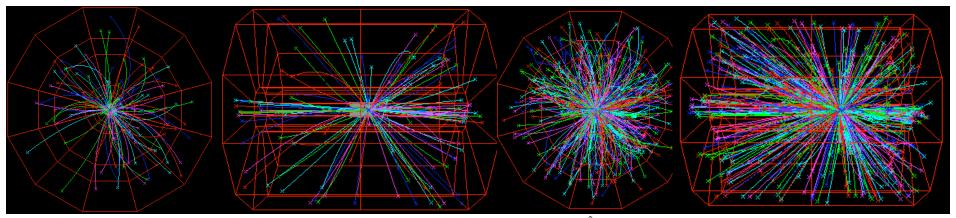


#### STAR's plan:

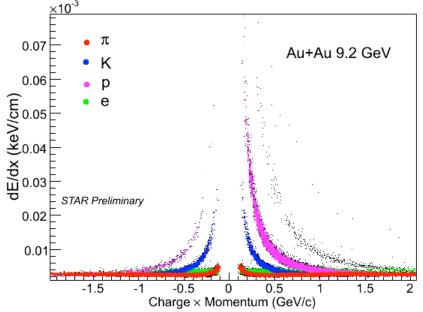
run10: RHIC Beam Energy Scan

run11: Heavy Quark measurements

- LGT prediction on the transition temperature,  $T_C \sim 170$  MeV.
- LGT calculation, universality, and models point to the existence of the critical point on the QCD phase diagram\* at finite baryon chemical potential.
- Experimental evidence for either the critical point or 1<sup>st</sup> order transition is important for our knowledge of the QCD phase diagram\*.


#### \* Thermalization is assumed

Stephanov, Rajagopal, and Shuryak, PRL <u>81</u>, 4816(98) Rajagopal, PR **D61**, 105017 (00)


http://www.er.doe.gov/np/nsac/docs/Nuclear-Science.Low-Res.pdf



## Au + Au Collisions at 9.2 GeV



- 1) ~ 3500 collisions collected
- 2) Determine Luminosity
- 3) STAR has preliminary results on: Particle identification in TPC; charged multiplicity,  $\pi$ - $\pi$  interferometry, particle spectra and ratios;  $v_1$  and  $v_2$



PID will be further significantly extended using full TOF.

Lokesh SQM08



# Run 9: 25 Cryo-week (scenario I)

#### STAR priorities for Runs 9 and 10:

- (1) 200 GeV longitudinally polarized p+p  $\Delta g(x)$
- (2) Beam energy scan down to √s<sub>NN</sub> ~ 5-6 GeV
  - Search for the QCD critical point

\*\* C-AD transverse stochastic cooling test important!

| Run | Energy (GeV)                            | System                                                                  | Time     | Goal                                                      |
|-----|-----------------------------------------|-------------------------------------------------------------------------|----------|-----------------------------------------------------------|
| 9   | $\sqrt{s} = 200$                        | $p_{\rightarrow} p_{\rightarrow}$                                       | 12 week  | 50 pb <sup>-1</sup> P <sup>4</sup> L 6.5 pb <sup>-1</sup> |
|     | $\sqrt{s} = 500$                        | $p_{\uparrow}p_{\uparrow}$                                              | 2 week   | Commissioning                                             |
|     | $\sqrt{s} = 200$                        | $p_{\uparrow} p_{\uparrow}$                                             | ½ week   | pp2pp                                                     |
|     | ** $\sqrt{s_{NN}} = 200$                | Au + Au                                                                 | 3 week   | 0.3B minbias, 0.5 nb <sup>-1</sup>                        |
|     | $\sqrt{s_{NN}} = 5$                     | Au + Au                                                                 | ½ week*  | Commisioning                                              |
| 10  | $\sqrt{s_{NN}} = 39 - 6.1$              | Au + Au                                                                 | 14 week  | 1 <sup>st</sup> energy scan                               |
|     | $\sqrt{s_{NN}} = 5$                     | Au + Au                                                                 | 1 week   | Commisioning                                              |
|     | $\sqrt{\mathrm{s}_{\mathrm{NN}}} = 200$ | Au + Au                                                                 | 2 week   | 200M central                                              |
|     | $\sqrt{\mathrm{s}_{\mathrm{NN}}} = 200$ | Au + Au                                                                 | 1 week   | 50M central                                               |
|     | $\sqrt{s} = 200$                        | $p_{\rightarrow} p_{\rightarrow}$                                       | ½ week   | pp2pp                                                     |
|     | $\sqrt{s} = 500 \text{ or } 200$        | $p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$ | 4 ½ week | Spin studies                                              |



# Runs 11 - 13 (30 cryo-week/yr)

| Run | Energy (GeV)                 | System                                                                  | Time    | Goal                             |          |
|-----|------------------------------|-------------------------------------------------------------------------|---------|----------------------------------|----------|
| 11  | $\sqrt{s} = 200$             | $p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$ | 6 week  | 20-30 pb <sup>-1</sup>           |          |
|     | $\sqrt{s} = 500$             | $p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$ | 15 week | 150 pb <sup>-1</sup>             | FGT      |
|     | $\sqrt{s_{NN}} = 200$        | U + U                                                                   | 2 week  | Commissioning                    | ]        |
| 12  | $\sqrt{s_{NN}} = 200$        | Au + Au                                                                 | 12 week | 0.5B minbias, 5 nb <sup>-1</sup> | HFT      |
|     | $\sqrt{s_{\rm NN}} = 39 - 5$ | Au + Au                                                                 | 13 week | 2 <sup>nd</sup> energy scan      | ] ' '' ' |
| 13  | $\sqrt{s} = 200$             | $p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$ | 13 week | 2B minbias, 100 pb <sup>-1</sup> |          |
|     | $\sqrt{s} = 500$             | $p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$ | 12 week | 300 pb <sup>-1</sup>             |          |

Run 11: (i) 1<sup>st</sup> measurement of flavor dependence of sea q/anti-q polarization in the proton at  $\sqrt{s} = 500$  GeV p+p collisions

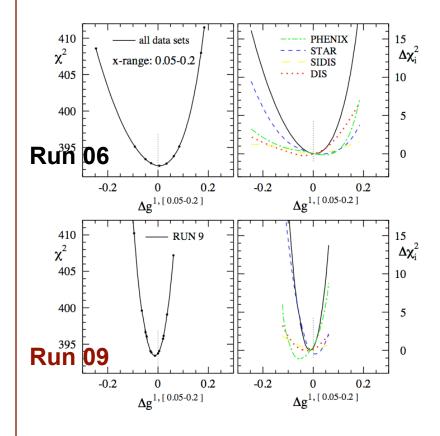
(ii) HFT engineering prototyping in  $\sqrt{s_{NN}}$  = 200 GeV U+U collisions

#### Run 12: Anticipating RHIC-II high luminosity

- (i) 1<sup>st</sup> HFT physics measurements of charm hadron  $v_2(p_T)$  and  $R_{CP}(p_T)$  in  $\sqrt{s_{NN}} = 200$  GeV Au + Au collisions
- (ii) Focused energy-scan in the search for the QCD critical point. Prior accelerator development is crucial at  $\sqrt{s_{NN}} = 5-6$  GeV
- (iii) gamma-jet and quarkonia states measurements

Run 13: (i) HFT physics reference measurement of charm hadron spectra in  $\sqrt{s} = 200$  GeV pp collisions; complete remaining  $\sqrt{s} = 200$  GeV spin milestones.

(ii) Measurement of the x dependence of W production at  $\sqrt{s} = 500 \text{ GeV}$ 




# Run 09: p+p collisions

Starts on Feb. 2, 2009
500 GeV p+p collisions
- total of 10 cryo-weeks
=> ends on April 5<sup>th</sup>
5 weeks at 500 GeV

IF sufficient fy09 funds arrives total of 22 cryo-weeks =>
 4 weeks at 500 GeV plus
 11-12 weeks at 200 GeV longitudinally polarized p+p collisions to measure
 Δg(x) at a FoM: 6.5 pb<sup>-1</sup>

de Florian et al, arXiv: 0804.0422





# Summary

#### STAR collaboration and its physics program are strong:

- more groups join in
- best positioned for Exploring the QCD phase diagram
- best equipped for ∆g measurements at the highest energy polarized proton collider
- Excellent for precision measurements and great potential for new discoveries

Complementary to ALICE at LHC at higher energy Complementary to CBM at FAIR at lower energy

#### **Problems:**

- (1) Stable funding for upgrades and beam time
- (2) Need more collaborators to work on detector